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Block spin transformations in the operator formulation of 
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Department of Mathematics, University of Birmingham, Birmingham B15 2TT, U K  

Received 18 August 1988, in final form 22 March 1989 

Abstract. We show that statistical mechanical models, such as the q-state Potts model, 
whose transfer matrix may be written in terms of the Hecke algebra H , , (q ) ,  respond to 
block spin scale changes at a certain critical point in a way which may be interpreted as 
an algebra homomorphism. Part of the structure of the algebra, and hence part of the 
transfer matrix spectrum of the model, is preserved provided q = 4 cos2( x /  r )  ( r  integer). 
These partial realisations of scale invariance are of a distinct type for each r, characterised 
in some cases by an endomorphism of the algebra. Such an endomorphism would generate 
a ring of integer dilatations in the conformal symmetry of the field theory limit. We discuss 
the realisation of other aspects of conformal symmetry in the lattice algebra. 

The homomorphisms we describe preserve the Yang-Baxter equations for all r and 
all temperatures. 

1. Introduction 

It has been pointed out by several authors that the critical point field theory limit of 
various two-dimensional statistical mechanical models labelled by a parameter q = 
4 cos2( r / r )  ( r  integer) is given by the conformal field theory (CFT) with central charge 

c = 1 - 6 / [  r (  Y - I ) ]  (1) 

(for a recent list of references see Cardy (1987)). Specifically, these models include 
the appropriate q-state Potts models, six-vertex models and  the Andrews-Baxter- 
Forrester (1984) models. 

Evidence for this identification consists mainly in the charged Coulomb gas (cc)  
picture of such models (see Nienhuis 1987). The appropriate Coulomb gases have 
been associated with CFT by Dotsenko and Fateev (1984). The Coulomb gas picture 
is not in any doubt, because of the quantity of supporting evidence derived from 
independent sources. However, it relies on various universality assumptions. These 
are borne out for integer r, but one has to work hard to make the CG renormalisation 
group analysis differentiate between integer and (say) irrational Y (cf Belavin er a1 
(BPZ) 1984). 

In contrast, the above-mentioned models may be constructed exactly in terms of 
representations of quotients of the A,,-type Hecke algebras, H, ( q )  (Hoefsmit 1974), 
each of which has the property that it has a generic structure for irrational r and a 
rich sequence of special structures for rational r (among which the integers play a 
further special role-see Martin (1988)). This is strikingly analogous to the observed 
behaviour of the Virasoro algebras labelled by c (Friedan er a1 1984). It seems 
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worthwhile, therefore, to try and recouch the renormalisation group arguments in this 
framework. Furthermore, unlike the conformal structure, the algebraic formulation 
we will use is preserved in significant part away from criticality and for all q. It 
therefore provides a much more general tool with which to examine the response of 
statistical systems to scale changes. 

In the present paper we discuss the response of these lattice models, in their general 
operator algebraic construction, to dilatations generated by block spin renormalisation. 
Perhaps the most topical aspect of the response to scale transformations in general is, 
however, the possible instance of scale transformation invariance. We therefore focus 
most attention on the conditions for manifestation of dilatation invariance in the 
algebraic construction, specifically of the critical models. 

Since each appropriate Hecke algebra quotient builds a model with a conformal 
field theory limit, then ultimately the whole Virasoro algebra should be constructed 
directly as a subalgebra of that quotient, in each case. So far, however, this construction 
has been realised only for the unitarisable c = 4 case (see, for example, Martin 1989). 
On the other hand, global scale changes, translations and rotations form a nontrivial 
subset of the conformal transformations. Among these, only certain translations are 
automorphisms of the lattice, and none of them are obvious automorphisms of the 
algebra we will introduce, so they provide a good testing ground for the algebraic 
approach. We work with models parametrised initially by arbitrary q and arbitrary 
temperature. We exhibit the need to restrict to the above special values of q (the 
‘Beraha’ values (Baxter 1982)) and to critical points. Our observations also appear to 
distinguish the nature of the invariance for distinct values of c in the lattice framework. 
In the field theory limit the response to global scale changes should not be sensitive 
to the central charge (see Cardy 1987). However, we never take this limit, so such 
sensitivity is not ruled out. Local scale changes are discussed more briefly. 

Note that the CG has infinite range interactions, and so is not itself amenable to 
the local transfer matrix treatment (reviewed below) which reveals the algebraic content 
of the Potts and other such models (see also Schultz er a1 (SML) 1964). 

2. Block spin transformations and transfer matrices 

In the simplest scenario for block spin renormalisation in equilibrium statistical 
mechanics we have a partition function written in terms of the classical Hamiltonian 
for some set of fields (lattice ‘spins’ resolved at some scale a )  with various coupling 
parameters { p } a ,  and the same partition function written in terms of a set of fields 
resolved at ba ( b  f 1) with couplings { p ( { p } u ) } h g .  The fixed points of the implied 
coupling transformations (renormalisations) are associated with scale-invariant critical 
points, and  the transformations linearised at these points give critical exponents (see, 
for example, Ravndal 1976, Swendsen 1984). 

Consider a regular two-dimensional many-body system resolved at some given 
length scale in terms of spins on a lattice. The transfer matrix T for such a system is 
defined as follows. The matrix element ( T ) u  is the exponentiated classical Hamiltonian 
for a single one-dimensional layer of the lattice system with the spin configurations 
on the ‘leading’ and  ‘trailing’ edges or faces of the layer determined by i and  j ,  
respectively (see, for example, Kogut 1979). Figure l ( a )  illustrates the example of the 
-Potts model. We will refer to the spins associated with the leading edge as ‘outgoing’ 
and the trailing edge as incoming. The boundary conditions at the ends of the layer 
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i b )  

Figure 1. ( a )  Adding a one-dimensional layer to the two-dimensional lattice in the Potts 
model case. Sites marked 0 are associated with q-state spins in the trailing edge; sites 
marked 0 are in the leading edge. ( b )  The braid corresponding to T(-eH, -e-') for an 
N = 12 site lattice. 

need not concern us for the moment. In the transfer matrix formalism the statistical 
mechanical partition function for a two-dimensional model on a lattice composed of 
M = mb (with m, b integers) layers, with overall leading and trailing edge boundary 
conditions given by i and j ,  is thus written 

Z = ( i i T M l j ) =  ( T ~ ) , , .  ( 2 )  

The brackets identify the boundary conditions as vectors in the configuration space 
of a layer edge. Such a vector is often written ( i l  E VO V O  VO.. .O V where V is the 
space of configurations of a single spin and  the product is over spins in an edge. For 
example, Z = Tr ( T M )  = E, ( i /  T M  I i )  corresponds to periodic boundary conditions. We 
will suppress explicit reference to boundary states in what follows, so Z = ( T M ) .  

Thus we require, for scale invariance under a scale change b, 

( ( Ta ( { P  }o ) ) - ( ( T h o  ( { P  1 bo (3) 

( T o ( { P } o ) ) h - ( T h a ( { P } h o ) )  (4) 

M' ') 

or, more strongly, 

where To is the transfer matrix for fields resolved at scale a. 
could include any possible lattice interactions 

(some may be eliminated by symmetry). However we may try and approximate the 
transformations by manually turning off some interactions at each stage (see Cardy 
1987). One non-trivial approximation of this kind is to consider just two (longitudinal 
and  transverse nearest neighbour) coupling parameters. 

In general the set of couplings 

For example, the classical q-state Potts model Hamiltonian may be written 

H = c P 1 , % , T ,  

0)) 

where the spins s, take values from { I ,  2 , .  . . , q} on the sites i of the square lattice (of 
figure l ( a ) ) ,  and the sum is over nearest-neighbour bonds (so p,, = p ,  if i , j  are separated 



3994 P P Martin 

by a vertical bond, say, and p2 if by a horizontal bond). Another example is the 
six-vertex model, in which the degrees of freedom s,, E (1, -1} reside on the lattice 
bonds b of a square lattice ‘medial’ to that of figure l ( a )  (Baxter 1982), and the 
interactions on the sites. The interactions in this case are usually given by defining 
the Boltzmann weights for the various possible configurations at a site. Referring to 
two adjacent bonds impinging on a site as incoming, and the other two outgoing, then 
the weights are set to zero unless the outgoing states are a permutation of the incoming 
ones. This leaves six non-zero interactions (hence six-vertex model). The interactions 
are usually taken to be invariant under sb  -+ -sh for all b, so there are three distinct 
interaction weights to specify per site. One of these may be taken to be unity without 
loss of generality. The relationship between the other two is determined by q (see 
Baxter 1982), leaving one variable coupling parameter. The two-parameter version of 
the model has different triples of weights for sites on the odd and even sublattices. 

We define the ‘single-interac,.on transfer matrix’ t,(x) for such models so that 
( t , ( ~ ) ) , ~  is the exponentiated classical Hamiltonian for a single interaction at position 
i (with coupling parameter x)  in a lattice layer with leading and trailing edge configur- 
ations given b y j  and k. It is then possible to write the one-dimensional layer transfer 
matrices for a large class of two-parameter lattice models, including the above models, 
in the form 

N N-1 

j = l  j = 1  

Here 2 N  - 1 is the total number of interactions included in the layer (so N = 12 in 
figure l ( a ) ) .  For the Potts model, the factors t ,  each introduce the effect of one 
‘horizontal’ ( i  even) or vertical ( i  odd)  lattice bond interaction into the Hamiltonian. 
The matrices T and T’ just differ, therefore, in the order in which the effect of various 
interactions is incorporated into the Hamiltonian, and hence in the effective layering 
direction (for the Potts model T builds layers parallel to the horizontal bonds, while 
T’ builds staircase layers at 45”). The non-singular S matrix is a (readily calculable) 
function of x1 and x2, and Xodd,even = xl,*. These parameters are related to the original 
Hamiltonian parameters by x = (exp p - l ) q - l t 2  in the Potts case. 

A critical point in the chosen two-parameter submanifold of general coupling 
parameter space is any point on the line 

XlXZ = 1 (6) 

(Baxter 1982). We will write the one-parameter family of critical transfer matrices as 

We should make a few general points. Suppose there are s p-state spins in each 
incoming and outgoing edge of a layer (in the Potts case s = N,  p = q, in six-vertex 
s = 2N, p = 2), and the interaction at position i depends on the configuration of t 
nearby incoming and t outgoing spins. Then we get the following. 

(i) The matrix t,(x) acts trivially on all the subspaces of configurations of spins 
not involved in interaction i, that is f , ( x ) =  1 B l B . .  . @ l @ R , ( x ) @ l . .  .B1, where the 
product contains (s  - t )  p-dimensional unit matrices and R, is a p’-dimensional matrix. 

(ii) In a general model (with local interactions) R,(x)  could assign a different 
weight to each possible configuration of the variables involved in i. It would be 
necessary, in general, to build R, out of representations of a p‘-dimensional ‘local’ 
matrix algebra. We call this local because it covers only a single interaction. 

T’(l /x,  x) = T’(x). 
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The models we consider are characterised by (iii) the fact that R,(x) is built out 
of representations of a two-dimensional subalgebra-the simplest non-trivial special 
case; and by (iv) the existence of a Yang-Baxter equation (see later). 

Specifically, in the models of interest t,(x) may be written in the form 

r,(x)ac 1 +xu, 
where 1 is the unit matrix of appropriate dimension. The 2N - 1 matrices {U,},,-, 
obey the Temperley-Lieb algebra relations 

u,u, = Jqu, (70) 

u,u,u, - U,  = 0 i - j = * l  (76) 

[ U , ,  U,] = 0 i - j # + l  (7c) 

(Temperley and Lieb (TL) 1971) in our examples, or more generally those of the Hecke 
algebra HZN-] (q )  (see Hoefsmit 1974) in which (7b) is replaced by the weaker but 
not necessarily inconsistent condition 

u,u,+, U, - U, = U,,, U,U,+I - U,+, . (8) 

This latter relation pertains, for example, in a generalisation of the six-vertex models 
in which the two-state bond variables are replaced by p > 2 state variables. In this 
paper we will assume the TL relations on {U,},,-, unless otherwise stated. To sum- 
marise: the ‘local’ relation (7a) comes from point (iii); relation (7c) from point (i), 
and  (7b) or (8) from point (iv). We will see later that our special models renormalise 
in general to models in which RI is built from a larger local algebra. 

Up to degeneracy the algebra defined by the generators and  relations above 
determines the spectrum of T (Martin 1988) and  we may think of replacing the matrices 
with abstract operators. For example, the Temperley-Lieb algebra has a set of primitive 
idempotents Z, ( i  = 0,  1 , 2 , .  . , , k- 1 where k is the sum of dimensions of distinct 
irreducible representations) for which a map from any element of the algebra K to a 
scalar R , ( K )  is defined by Z,KZ, = R , ( K ) I , .  If K is the transfer matrix raised to a large 
power then R , (K)  will be numerically dominated by the largest magnitude eigenvalue 
whose eigenvector is not orthogonal to I , .  A particularly useful example of this is the 
idempotent 

I @ =  n ( u , l J s ) .  
J odd 

It is easy to see that this is a primitive idempotent on application of the TL relations. 
In the physical coupling region R,(T’) is dominated by the largest eigenvalue of T 
in the Potts representation, and hence gives the partition function for some reasonable 
set of boundary conditions (actually = 0 at the boundaries). Other eigenvalues in 
the spectrum of T determine the long-distance correlations of various observables in 
the system (see Kogut 1979). 

Note that the definition of 1, works for any lattice size N. Similarly, other idem- 
potents may be associated with observables in an  N-independent way. This gives a 
chain of physically motivated correspondences, connecting the irreducible representa- 
tions responsible for a given observable at each different lattice size (see later). 

In general we would expect a block spin transformation to map from the two- 
parameter model to one containing more complicated couplings. In particular, we 
would not expect the operator algebraic structure above to be preserved. However, 
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we will be optimistic and consider the possibility of finding a fixed point somewhere 
in the two-parameter space, in which case it must be on the critical surface given by 
xlxz = 1 (with x, and x2 regarded as complex variables). Such a point is supposed to 
be universal (in the sense of Kogut (1979)) with other critical points on the surface. 
It is known, for example, that the divergence of the Ising model specific heat depends 
on the approach of the product xlxz to unity, and not on any properties of x , ,  x2 
separately (see, for example, Baxter 1982). Specifically we will look for a point where 
at least part of the algebraic structure of the renormalised model is recognisable from 
the original model (i.e. a weaker version of (4) in which at least part of the spectrum 
is the same). 

3. Yang-Baxter equations 

For the models we refer to above the spectrum of T has not been calculated in general. 
One property which generally leads to computability of this spectrum ('solvability' of 
the model) is commutativity of transfer matrices defined at different couplings (see 
Baxter 1982). On the critical surface this is (up to possible boundary terms) a 
consequence of the Yang-Baxter ( Y B )  equations: 

4 ( X I  t1+ I ( Y )  tl (4x9 Y )  1 = tt+l(Z(x, Y ) )  tl ( Y )  t,+ 1 (x). 

Ax, Y ,  z)  = t l ( X ) t 2 ( X ) t 3 ( X ) .  . . tn(x)r1(y)t2(4,)t,(v) ' * .  t,(Y)(tn(y))-ltn(Z)tn(X). 

t l ( X )  f l  (z)(  tl ( Y ) ) - I  T ' ( y )  T'(x). 

(9) 

(10) 
If we restrict attention to the critical surface then p(x, y ,  z) is, up to boundary terms, 
a product of transfer matrices T'(x) T ' ( y ) .  Using the YB equations we find p(x, y ,  z)  = 

Applying the TL relations to t ,  = 1 +XU, we find that the YB equations are satisfied 

To see this consider repeated applications of these relations to the product 

with 

z (x, Y 1 = (Y - x I /  ( 1 + xJq + XY 1 

z(-e'-E, -e'-8) = ( ~ - 8 ) / ( - e - ' ~ + e ' 8 )  

or 

where e'+e-' = Jq (it is also useful to define Q = e2'). The critical models have thus 
been solved (Baxter 1982). 

Note the trivial case of the Y B  equations here, x = y  f -e*' implies z = 0, and the 
special case x = y = z = -e'. Writing t,(-e') = t ,  these special single-bond transfer 
matrices then satisfy (amongst other things) the relations for generators of the 2 N  
string braid group % 2 w  (Birman 1974). That is, with 

t : ' = t , ( - e * ' ) = ( 1 - e x p ( * t ) U , )  (11) 

t , t ,+lt ,  = t ,+lt , t ,+l  (12a) 

we have 

(see, for example, Temperley 1986). The additional relations for this alternative set 
of generators of the Hecke algebra are (from (7) and (8)) 
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In other words the TL or  Hecke relations of ( 7 )  and (8) imply solutions of the YB 

equations, and  the Y B  equations have fixed points which imply realisations of the braid 
relations. However, realisations of the braid relations d o  not necessarily imply realisa- 
tions of the Hecke relations, since the quadratic relation need not be preserved (see 
later). 

One small but non-trivial aspect of conformal symmetry, discrete translation invari- 
ance, has been implicitly realised in the above operator formalism. Translation within 
the transfer layer may be achieved by the conjugation 

U, = T’(-eH, -e-H)U,-l(T’(-eH, -e-’))-’. (12d)  
In particular, a U, = U,, may be defined within HZN-,  by conjugating U,,-, . This, 
incidentally, gives a generalisation of the formalism to a periodic lattice. Note that 
the above conjugation is a similarity transformation on any representation, so the 
algebra automorphism maps representations to themselves. Translation by one lattice 
spacing is achieved by applying the above conjugation twice ( a  single conjugation has 
the effect of a duality transformation). There are other ways of achieving such a 
translation, each corresponding to a different choice of seam on closing the periodic 
boundary. 

Translations in the layering direction are achieved by conjugating by T itself, i.e. 
an  expectation value on the N x M site lattice (specifically an  unsubtracted correlation 
of local observables O,, between some origin (0,O) and another point ( i ,  j ) )  is given by 

where (do),, = O(x)6,, gives the result of a measurement B (at the origin point of the 
layer) on layer configuration x. Here and subsequently we write T’ without arguments 
for T’ taken with the couplings in (12d).  

(6000i,)M = ( TM’*6,T’( T‘)2’f‘?,,( T’)”’T-’T’’*)/Z 

4. Cabling transformations 

The transformations above act as translations at any (x,, x2) (although T is x depen- 
dent). In other words, discrete translation invariance is a symmetry which survives 
away from criticality. By restricting to the critical point of (12d) we can also realise 
a block spin transformation in the operator framework. The transfer matrix in this 
case is represented by the braid shown in figure l ( b )  (see also part (i) of the appendix). 
Taking T 2  (for b = 2  in (4)) we have the braid shown in figure 2, and so on. 

Now consider f defined by the braid shown in figure 3 (we will call this a cabling 
of strings in pairs) and compare T‘”’ with (f)m for large m and N. The differences 

Figure 2. The braid corresponding to T’. 

Figure 3. The braid corresponding to f. 
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are purely boundary effects. But in f pairs of strings manifestly preserve their 
orientation (in other words, we have integrated out on the scale of the corresponding 
interactions-see ( 5 ) ) .  The fixed-point criterion then simply requires the equivalence 
represented in figure 4 (at least on the infinite lattice), where these diagrams are to be 
interpreted at the level of the transfer matrix. That is 

(1 -es i i , )  = (1 - e ' ~ , , ) ( l  - ~ ' u ~ , - , ) ( I  -eOU, ,+l ) ( l  -eOUU,,)  ( 1 3 ~ )  

or, for example, 

iil= U,+ U3+(l+e")UUZ-e'({U,,  u,}+{u,, U,}+ u,u,) 
+e2'{U2, u , u , } - ~ ~ ' u ~ u , u ~ U ~  ( 1 3 b )  

where {fi!} should be another Temperley-Lieb or Hecke algebra (with roughly half 
as many generators) if dilatation invariance is realised. Equating coefficients we find 
that the requirement that the new operators satisfy the Hecke relations determines 

exp(28) = 1 (14) 

that is, q = 4. To see this note, for instance, that the coefficient of U,,,, must be the 
same in fi: and (e'+e-')fi,  (relation ( 7 a ) ) .  The coefficient of U,,,, in fi? comes 
from terms in the expansion of (13) beginning and ending with U,,,, , that is e30 + e-' = 
e'+ e-'. The same condition is obtained for coefficients of U,,-, (by symmetry) and 
U2, .  Altogether we have (putting i = 1, for example) 

( ii, l 2  - Jq ii, = (e3' - eo  )[ ii, + (e3' - e-') U ,  U,  - e4'{ U,, U ,  U,) + u1 U, U, + U, U, U ,  

+ (e3' + e')e''U2 U ,  U,  U,]. (15)  

We are writing these expressions out explicitly because they will be useful later on. It 
is easy to see that if relation (7a)  is satisfied then the relations (8) and (7c) follow 
from the form of equation (13). That is, noting from the diagrams that we automatically 
have 

?,E+, i, = ?,+I  Et,, (16) 

(see also Birman 1974) we then have relation (8), and so on. Note that this observation 
is independent of the number of strings in the cable, n say, although we have taken n = 2. 

Using the same diagrammatic notation we can look for fixed points under the 
blocking represented in figure 5 and defining U',' (in a notation in which fi becomes 

Figure 4. The equivalence f 2 f ,  tjt2 = i, . 

Figure 5. The equivalence t 3 f 2 f 4 t , t 3 f 5 t 2 t 4 f 3  = 
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U"') ,  and so on. The obvious generalisation of this procedure to n string cables gives 
(with x = -e') 

(where the order of the product ITk matters and  the index j in the product IT\ is 
incremented in steps of 2), and hence U ! " ' .  

Consider, for a moment, the effect of generalising away from x = -e'. The { t , ( x ) }  
no longer satisfy the braid relations, but satisfy the Y B  equations. The diagrammatic 
notation may be generalised to represent these by figure 6. It is then obvious, by 
repeated application of the Yang-Baxter equations, that models obtained by the 
replacement fl"'(x) + f , ( x )  continue to satisfy the YB equations for all temperatures 
with the same functional form for z ( x , y ) .  This means that our cabling procedure 
generates many new solvable models (solvable in the sense of computable spectra). 
This procedure is basically equivalent to the fusion procedure of Date et a1 (1987), 
but works for any model built using the Hecke algebras. Note that the cabling factor 
may vary from braid to braid without affecting the generalised YB equation. We can 
also attach a n  idempotent for the n-string subalgebra (Markin 1989) to each n-string 
cable without disturbing the braid relations. 

Figure 6.  The Yang-Baxter equation. 

We have shown that the block spin transformations or cablings (17) map from 
solvable models to solvable models. What we want now is to find models which are 
taken to equivalent models by such maps. That is, the fixed points of the maps. These 
occur when { U:")}  satisfy the same relations as { U,}. Equation (14) gives such a model 
for n = 2  (see later). 

The weak version of (4) requiring part of the spectrum of the 'equivalent' models 
to be the same corresponds to allowing the set of relations on the { U , }  to be added 
to, in order to recover the Hecke relations at the {U:" ) }  level, without requiring that 
corresponding relations be added to the set for {U!" ) } ,  For example, if the condition 
Q = e20 = 1 from (14) is not satisfied then the additional relation: 

t 2  t ,  f3 f 2  t, f 3  = [ Q /  ( 1 - 0 )I{( 1 + 0 + Q 2 )  + [ ( 1 - 0 + Q 2 ) /  91 f 2  f l f 3  t* - Q 2  t 2  

- (?( f 2 f 1  f 2  + f 2 t 3  t 2 )  - t l  f 2 r 3  f 2 f l }  (18) 

is necessary and sufficient to ensure that f j 2 '  (and hence U!") has the correct quadratic 
relation. As we will see later, the non-trivial solutions to this kind of extra condition 
restrict q severely in general. The dimension of H2N-l (q)  is ( 2 N ) ! .  The left-hand side 
of the above relation is the longest word, in these generators, in H,(q) .  After some 
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work we find that, generically (i.e. for q # 4,0 ,  1,2-see Martin (1989)), this relation 
implies t ,  = 1. 

Putting n = 3 in (17) we find that the coefficients of U3,iz in the right- and left-hand 
sides of relation (7a)  for the new operators are not equal unless 

Generalising to n x n blocking we find that this necessary condition determines 
exp(48) = 1 or  q = 4,o. (19) 

exp[2(n - l ) 8 ]  = 1. (20) 
This means that 

0 = 2m.rri/2( n - 1) 
or  

q = (e6 +e- ')*=4 cos'[m.ir/(n - 111 with m integer. 
In other words the possible scale invariant critical points at this stage are indeed those 
with the Beraha q values. 

5. The case q = 4  

Unfortunately we find, by further direct calculation, that this necessary condition is 
not generally sufficient. The Hecke relations are only exactly realised for the new 
operators, without extra conditions at the { U ! }  level, when q = 4. Nonetheless this 
analysis reveals that, at q = 4, at least the thermodynamic limit model has integer 
dilatation invariance (in the weak sense of (4), with b = n, n E Z ) .  This is enough to 
imply a massless field theory limit (Cardy 1987), provided that the representation of 
the algebra responsible for the free energy survives in the spectrum of the renormalised 
model. To see that it does, note that in the case q = 4 we have t f  = 1, so the { t , }  satisfy 
relations for the generators of the permutation group on 2 N  objects, & N .  

What we have done is to construct endomorphisms of the infinite lattice algebra 
( N  -+ 00) defined by (17). Strictly speaking we have constructed maps from the N -  1 
generator algebra, say, to the n N -  1 ( = 2 N -  1) generator algebra, which become 
endomorphisms in the limit. The maps correspond to the existence of subgroups of 
the permutation group on nK objects (say), S,, , which do  not permute within a cluster 
of n objects. More generally S,, 2 S ,  3 ( S ,  x S, x . . . x S,), which we will denote 
S, 3(S,)a'. Strictly speaking the first product is semi-direct (the S-, permutes the S, 
subgroups, so in this particular case we have the wreath product S,WS,).  The 
distinction need not concern us here, and we will not make it in what follows. We 
are simply indicating how the S ,  subgroup is realised. A different (non-unique) 
realisation is indicated, for example, by S,, 2 S ,  x S(,-,)"% . In terms of restriction of 
representations (Robinson 1961) we restrict the Potts representation R (say) for S,, : 

RS,' 3. SA x (Sl)a'n-l) '  = 2 dppsn\ 3. S r  
/I 

= 2 d, 2 &,,vSUv (22) 
, U  

(the sums are over irreducible representations, vS,) where d, is given in Martin (1988) 
and &, in this case by the usual skew tableau restriction rules. Not all realisations 
give the same &,. In particular, the kind of representation responsible for the free 
energy in Potts and related models (tableaux of two equal rows) does not necessarily 
appear in the restriction to S, of the corresponding representation of Snh, in the 
cabling realisation. For large n or  N, however, it typically does. 
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The determination of dpy here is an interesting problem. One approach, suggested 
by R A Wilson, is via the conjugate but not identical realisation indicated by the 
sequence 

S , ,  = S , O S , @ S  ,... OS, 2diagonalS , .  
The procedure here is still rather complicated (because of the last restriction). However 
this conjugate alternative does serve to illustrate the point that the model will be 
invariant under many (if one) blockings, associated with conjugate realisations of the 
subgroup. Presumably not all these blockings correspond to a global scale change. 

Note, however, that there is no semidirect product with S ,  appropriate for irregular 
cablings, i.e. no composition law for elements of the set S", x (S , ,  x S,, x . . . x S,,, ) c S, + 

where Xc;'=, n, = n.N. This is a pity, since such a group would allow the most obvious 
possibility of realising other than global conformal transformations explicitly. Note 
the possibility of an inverse dilatation interpretation of the representation induced 
from the subgroup to the group and related to the restricted representation above by 
Frobenius reciprocity (see Robinson 1961). We will leave these points for now, as 
they do not have an obvious parallel in the block spin picture. 

6. Other cases 

When q # 4 things are slightly more complicated. It is convenient to use the alternative 
set of generators { t , }  for the Hecke algebra. Note that this presentation manifests the 
similarity with the braid group and is useful for working in this context, while the 
extra relation for the TL algebra 

1 - t, - t ,+ ,  + { tl, fl+J - tltl,, t, = 0 (23) 
is more simply expressed when working with the {U,}  (equation (7b)). 

We see that the map defined by (17), { t ,'"'}m + { t , } , , ,  preserves the first two relations 
(12) (this map corresponds to cabled braid subgroups of the braid group: BnN 2 $BN 9 
( $Bn x 93" x . . . x 3,)) but not the third. In general the map will result in the replacement 
of (12c) and any other additional relations (such as (23)) with a different set of relations. 
Since tj"' is built from 2n - 1 consecutive generators from { t d } ,  which generate at most 
(i.e. in the Hecke case) a ((2n)!)-dimensional algebra, the new local relation (on t i" ' )  
will be polynomial of order at most (2n) !. In practice the order is much less than this, 
but we have not computed many specific cases. 

Generically (see Martin 1989) the smallest faithful representation of a Hecke algebra 
is a direct sum of one copy of each inequivalent irreducible. The generic polynomial 
for tl"' can therefore be sensibly written out as a product of the factors coming from 
each irreducible representation of H2n-L(  q )  (which generates t j " )  up to isomorphism, 
by (12d)). This involves some degeneracy (multiple roots in the polynomial), but each 
such factor gives the polynomial local relation obtained from a corresponding non- 
trivial quotient of the original algebra. For n = 2 the dimensions of irreducibles are 
1 0 3 0 2 0 3 0  1 and the polynomial relation on t = tr2' is, by direct computation, 

( t -  O"[( t+ Q 3 ) ( t +  Q2)l [ ( t -  O ) ( t -  03) l [ ( t  - O ) ( t +  O ) ( t +  Q2)1(t- 1) =o. 
In this notation the n = 1 case is just ( t  + Q)( t - 1) = 0. 

Beraha cases ( q  = 4 cos2( r / r ) ,  r = 3,4,5 . . .), 
Besides (23), the kind of additional initial relations that appear include, in the 

idem,[ r - 11 = 0 (24) 
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where idem,[ r - 13 is defined recursively by 

sinh((r -2)O) ( sinh((r-1)O) 
idem,[r- l ]=idem,[r-2]  1-  

with idem[l ]=l  (Martin 1988). It is easy to show that these relations restrict to 
unitarisable representations of the TL algebra. These are the additional relations which 
appear in the Potts model. The stronger the initial relations are, the stronger the 
relations will be at the renormalised level (this corresponds to the dependence on 
initial parameter values for a single transformation in the renormalisation group picture 
(Ravndal 1976)). 

For example, we note that in general 

so that t :  = 1 if q = 4 cos2((k -2)7~/2k) ,  and in particular t ;  = 1 for r = 4, q = 2. If we 
impose the relations (24) in this case we find that, as far as we have checked ( n  = 
1, .  ' a ,  51, 

( $ 9 4  = 1 (26) 

although the stronger relation (12c) is no longer satisfied for n > 1 (see also the 
appendix). If we do not impose relations (24) then a higher-order polynomial relation 
is satisfied by t i " ) .  

Thus, unless a sufficiently restrictive set of relations are preserved under the 
transformation (18), we have to check explicitly that, for a given representation of the 
{ U,},,,, the constructed representation of the {ti"'}, contains the representation of 
{ t i } ,  we want. The stronger the relations which survive after the transformation, the 
better our chances (see also part (ii) of the appendix). 

We will give two examples. Firstly consider the Burau representation (Birman 
1974) for the { t i } , ,  satisfying (12a-c) and some other relations, defined by the 
nm-dimensional matrices: 

j = k # i  
= i, i + l  

= i, i -1  
otherwise. 

Here we find that t i" '  can be decomposed into irreducible components as follows: 

In other words, this reducible representation of some larger algebra (larger in the sense 
that the Burau part of the TL algebra is a quotient) contains an irreducible component 
which gives the Burau representation of the TL algebra, again provided 

B - n e  e - e  

i.e. 

q=4cos2(2.?rk/(n- l ) )  ( k  any integer). 
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Note again that, not only are we restricted to the Beraha q values, but that each of 
these only appears for certain values of n (the scale change factor). In fact the physical 
role of the Burau representation changes as the lattice size changes, so the significance 
of this n dependence is obscured. 

Secondly, consider the Potts representation (Baxter 1982) for q = 2. As we have 
said the { t ,}  obey relations (12), (23) and (24), which can be written 

t:t;+, = - t f + * t f .  (29) 

Considering the case { t , ,  i =  1, .  . . , 2 n } t { t j " ' ,  i =  1,2} we recall that { t i " ' }  obeys (26), 
(12a) and (12b). In this case the quotient group of the three-string braid group is 
finite (96 elements) and we find that (for n 3 3 )  the reducible representation of the 
{ t l"'}  and hence of this group constructed from the { t , }  contains irreducible representa- 
tions which satisfy the Potts relations (in addition to ones which do not). There is 
evidence to suggest that this generalises to { t i " ' ,  i = 1, . . . , m},  but the calculations are 
presently rather tricky. 

The significance of such representations is that they imply that parts of the spectrum 
of the transfer matrix for the corresponding critical statistical mechanical model (5) 
are invariant under the appropriate dilatations in the thermodynamic limit (equivalent 
representations give identical contributions to the spectrum). 

A natural question to ask at this stage is: why not linearise about the fixed point 
and obtain the critical exponents? Unfortunately, as we can see from (13a), different 
parts of f i l  transform in different ways under e o +  e'+ E .  Thus there is no unambiguous 
response to measure. We have to know how to rewrite f i l  away from criticality, which, 
as yet, we do not. There are various procedures we could follow, but none are 
compelling. In any case we already know the exponents from the conformal pro- 
gramme, what we have done is to begin to show why this programme is relevant! 

The next step in this process is the systematic computation of the evolution of the 
quadratic term (12c) under { t i " ) }  + { t l } .  This is achieved by constructing a faithful 
representation of tj") using the known representations of { t , }  (see Martin 1988, for 
example), and finding the characteristic polynomial. By checking if the polynomial 
contains (12c) as a factor we can immediately see if the weak version of (4) may be 
satisfied. This is a tractable procedure in principal, but a substantial work of computer 
algebra (even for the small cases) in practice. 
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Appendix 

(i)  Note that the transfer matrix may be written in terms of the {ti} at other 
temperatures. We proceed formally by 

tF=( l -e 'Ui)k= l+f(e', k ) U i  k E Z  

but f has a natural extension from k E Z to k E C so that for (1 +xui) we have 
k = f-'(e', x). We use the relation (1 1) to recover an element of the algebra from such 
objects when k is not integer. 
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(i i)  It is interesting to consider the operator algebraic structure behind the partial 
dilatation invariances we have found. It is easy to see that ( t i " ' ) 2  commutes with t, 
for j = ni - n + 1 to ni + n - 1 (excepting j = n i )  because, with BnN 1 %3N x (B,,)@N, the 
object ( tj"')2 has no action in the ( 92,,)@N (i t  is an element of the pure braid subgroup 
of the BN and the gf lN  (Birman 1974)) while these tJ act purely within a 24". 
Furthermore 

c, = ( t , t 2 . .  , t f l ) n + l  

is central in i.e. it commutes with all the { t r ,  i =  1, n }  (conjugation by C ,  
corresponds to translation through n + 1 steps in an n + 1 site periodic lattice, since 
C, = (T')"+l; note that T' thus has all eigenvalues of constant magnitude in any 
irreducible representation). Now, if n = 2' then 

has the property that every factor fkb l  braids within a cable of some t',"' and (x,,,)' = 

CZn-l,i where C2n-l,i is C2fl-l with tk  replaced by f k t f l i - " .  This means, for instance, 
that for q = 2 

( t',2')4 = ( CJ2 

and so on (we have used t:'= 1). In other words, although ( t ( 2 ) ) 4  is not necessarily 
unity it is a central element in the algebra of three operators. Similarly (using (24)) 

( t ( 3 ) ) 4  = ( c5)2. 
These observations are peculiar to q = 2. Other Beraha q values have analogous 
relationships. This exercise inaugurates a search for substructure in H,-,(  q )  ( q  Beraha) 
analogous to the cabled braid subgroups of Bfl, which is realised for q = 4  in the 
permutation group subgroups. This is an exciting programme, both physically and 
mathematically. 

(iii) There are intriguing subalgebras of the TL algebra obtained by replacing ti 
with Ui everywhere in (17), whereupon the new { U ! " ) }  (distinct from the U ! " )  obtained 
via (17) as it stands) obey relations (7) with q+ q". Note that, for q = 0,1, these 
dilatation-like transformations again map the infinite lattice algebra to itself. There is 
no obvious connection with the cabled braid subgroup picture, but for the Potts models 
this looks like a block spin transformation in which the new (q"  state) variables simply 
encode the configuration of n q-state variables. 
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